
Help

Version 1.0 (January 91)

A Scheme-like Lazy Lisp dialect

This is Freeware
Copyright Thomas SCHIEX 1991

e-mail: schiex@cert.fr, schiex@irit.fr

Conclusion

Table of Contents

Table of Contents...1
5 The manual...3

5.1 An overview..4
5.1.1 Semantics...4
5.1.2 Syntax..4
5.1.3 Notation and terminology..4

5.2 Readable and non readable objects..5
5.2.1 The numbers (fixnums, bignums and floatings).......................................6
5.2.2 The lists..7
5.2.3 The cells...7
5.2.4 Bit-arrays...8
5.2.5 The strings...8
5.2.6 Symbols..8
5.2.7 Unreadable objects..9
5.2.8 Special characters and delimiters..10

5.3 The primitive expressions..10
5.3.1 Litteral references (constants, “quoted” symbols …)............................10
5.3.2 Variables references..11
5.3.3 Closure application..11
5.3.4 Closure creation...11
5.3.5 Conditional...12
5.3.6 Assignment..12
5.3.7 Non-memoïzing suspension...12
5.3.9 Environment..13
5.3.10 Defining macros...13
5.3.10 Defining external functions..13
5.3.11 Creating bindings...14
5.3.12 Sequence..14
5.3.12 Debugging..14

5.4 Predefined closures..16
5.4.1 Booleans...16
5.4.2 Equivalence predicates..16
5.4.3 Lists and conses...17
5.4.4 Symbols..19
5.4.5 Numbers..20
5.4.6 Closures...22
5.4.7 Macros...23
5.4.8 Cells (or vectors)..23
5.4.9 Environments...24
5.4.10 Bit-arrays...25
5.4.11 Entrées-Sorties..27
5.4.12 Erreurs et gestion d’errors..28
5.4.13 Control...29

Conclusion

5.4.14 System...30
5.5 Help interface..32

5.5.1 Configuration...33
5.5.2 Using the editor...34
5.5.2 The valuator and the “bugs”…...35

Bibliography..37
Examples...41
Index..45

Conclusion

Free use and non-commercial reproduction of the binaries of the interpreter is permitted,
providing that the copyright notices are not removed and left unmodified. Distribution by disk is
permitted provided only a nominal copying fee is charged. Upload to commercial bulletin boards
is also permitted, providing charges are only made for connect time, and there is no specific
charge made for the file.

This software is actually freeware, but any donation (under any useful form), e-mail, s-mail or
encouragement, is greatly appreciated by the author. I do not want to work (during week-ends) on
something that is left unused except by four or five people. Thanks !

For queries and bug reports write or e-mail to the author:

Thomas SCHIEX
Centre d’Etudes et de Recherche de Toulouse (ONERA)
2, Av Edouard Belin
BP 4025
31055 TOULOUSE CEDEX
FRANCE
e-mail: schiex@cert.fr

No responsibilities accepted for bugs, but please let me know so I may try to fix them.

For your information, Help is mainly written in 680x0 assembly language. Porting it to C, or any
“portable” language is not even considered (at this time).

The archive file is organized as follows:

Paresseux: The HELP interpreter. The needed memory may be changed via the Finder “Get
Info”.
Docs: as the name says…
Help Files: as the name says… One may find various theorical examples from lambda-calculus, a
constraint solver (“test and generate”, no forward checking or arc-consistency)…
Resources: contains 1) resedit templates ressouces to insert in your Resedit program to ease
Help ressources editing, 2) resedit resources to paste in Paressseux to change its appearance for
French (and return to english) and to chanhe its semantics (turning Help in a strict language or
returning to lazyness).t
start: a file needed by Help, loaded upon startup. Must stay in the Help folder.

Have fun !

5 The manual

Let us recall first that Help is, before anything else, a Lisp interpreter. Anybody having a good
knowledge of Lisp, or even better Scheme ,may in a first step, immediately try the binaries, but
beware of lazyness ! If you want to use Help and change its configuration, consider reading §5.5.

5.1 An overview

5.1.1 Semantics

Conclusion

▼ Help is a statically1 scoped language (identifier scope is lexical) as are Scheme, Algol…
Each identifier occurrence is associated with a lexically visible binding of this identifier.

▼ Help is non-sctrict, relying on call by need (also referred as “lazyness”) for every parameter
passing as in Lazy Miranda, Hope…

▼ Help is dynamically typed (types are latent), i.e. types are associated with values not
variables. This is usual in Lisp, APL, Snobol…

▼ Help closures (or procedures) are full citizens that may be dynamically created, gathered in
any data structure (eventually infinite data structures)… Help shares this quality with every
“functionnal” language (such as Hope, Miranda, Daisy…).

▼ Help objects (closures, evironments, numbers) have unlimited extent. The memory
management software will simply collect any object that may not be referenced by Help
user (usually referred as the “GC” or “Garbage Collector”). The same type of system is used
in every Lisp, APL, Prolog . It has been proposed for Ada, but no implementation i know has
included it.

▼ Help does not supports iteration, only recursion (lazyness and iteration do not originate
from the same world). Therefore, the interpreter efficiently handles terminal recursions.
This allows these recursions to operate with a fixed stack size consumption.

5.1.2 Syntax

▼ Help uses parenthesized for describing code and data. This syntax, whose simplicity is one
of the main advantage is used (with some exceptions) by every Lisp dialect2.

5.1.3 Notation and terminology

When Help semantics is yet undefined, we will consider that the value returned is an “undefined”
value. In this case, you should not rely on the peculiar value any implementation may return. You
should notre that an unspecified value is different for the “unspecified error” which is a precisely
specified value denoted by the symbol “?”.

In the following, the examples will always be presented in following typewriter style: exemples.
The symbol “➟” used in these examples should be read as “whose value is printed as…”. Because
of Help lazyness, there is an big difference between the internal representation (holding
“suspended values”) and the external representation. This distinction is important. Infinite objects
are usually limited by the interpreter’s printer. Dots (…) are used to denote the fact that the data
structure is not completly printed. Example:

(letrec [(x (cons 1 x))] x) ➟ (1 1 1 1 1 1 1 …)

1Du moins, c’est la cas dans le cadre d’une utilisation normale. Il est possible d’élargir la portée d’une
variable (Cf § 3.5.1.1).
2Les premiers évaluateurs Lisp utilisaient une syntaxe différente, distinguant programmes et données (M
Expressions opposées aux S Expressions actuelles).

Conclusion

The § 5.3 and 5.4 are composed of a sequence of definition. Each definition presents a closure or a
syntactic form of the language and begins by a header specifying a model (how is the
closure/syntactic form used), its type (the closures are separated in 2 types: ProcN whose arity is
ficed, and NProc whose arity is not fixed), its arity (minimal arity for NProc), its arguments types
(arguments style). If there is no restriction on the arguments type, the word any shall be used. The
following types will be considered:

number --------------------------- fixsize integer, “bignum” or floating point
integer ------------------------- fixsize integer, “bignum”
fix -------------------------------- fixsize integer
posfix --------------------------- positive fixsize integer
bignum --------------------------- “bignum”
floating ------------------------ floating point
smallnum ----------------------- a number that is not a bignum
list ------------------------------ conses or () (the empty list)
cons ------------------------------ conses
vector --------------------------- vectors, also called “cells”
environ-------------------------- environment
applicable--------------------- closure or fixpos
symbol --------------------------- symbol, error, constant,keyword…
ident----------------------------- variable or constant identifier
identv---------------------------- variable identifier
keyword ------------------------- syntactic keyword
error ---------------------------- error
bit-array ---------------------- bit-array
io-unit-------------------------- input/output unit
any -------------------------------- anything you may want

Example:

(cell=? vector posfix) Closure:ProcN 2

says that cell=? is a fixed arity closure (arity is equal to 2), whose arguments are a vector and a
number which should be a fixsize positive integer.

5.2 Readable and non readable objects

At any time, a great deal of different objects exist in the memory (the heap). Most of these objects,
whose external rpresentation is of matter to the user, are also readable (i.e., it is possible to give a
syntactic description of the object that may be given to the Help “reader”. This reader will then
create an internal representation of it). For pragmatic or feasability reasons, some objects have no
external representations or eventually, have an external representation which is not readable.

The reader makes no distinction between upper or lower cases (except inside strings and for
symbols interned with the“backslash” macro-char). So, the strings Foo, fOO denote a single
symbol. The space character (ASCII 32) eand carriage return(ASCII 13) are delimiters.

In the following, we will distinguish characters sequences (characters separated by delimiters (Cf
§ 5.2.7)) and strings (an object type in Help).

Conclusion

5.2.1 The numbers (fixnums, bignums and floatings)

Rationnals and complexs are not yet available in Help. Moreover, there are strong restrictions on
bignums use.

5.2.1.1 The integers

An integer is always read in the current base. This base is fixed with the closure ibase described
later. The character sequences that are interpreted as numbers depend on this base. If the base is
lower or equal to 10 (in decimal), the character between “0” and the base less one will be
considered as digits. If the base is greater than 10 (It is limited to 36 internally), digits are
extended using “a”…”z”. So, in hexa, The sequence “ff” represents an integer (not a symbol)
whose value is 255 (decimal).

Let CarNum, be the set of characters representing digits.

number::= number_unsigned |
+number_unsigned |
-number_unsigned

number_unsigned::= CarNum*

Examples: 123 +123 -123 +235987459862345 (base 10 at least)
12af (base 16) -foobar (base 29)

5.2.1.1.1 Fixsize integers

When there is an internal representation as a “fixsize integer”, the reader will automatically use
it. The value of a fixsize integer is between -2 147 483 648 and 2 147 483 647.

5.2.1.1.2 Bignums

Every integer that may not be internally represented as a fixsize integer will be read as a
“bignum”. Pay attention that “bignums” handling uses much stack space.

Allocation of temporary “bignums” on the stack during bignum computation implies that bignum
size is limited:

1- by the heap size;
2- by the stack size !

So, it is possible to get a “full stacks” error using a terminal recursion for Fibonacci if you use
bignums (try (fib 50000)) …(NB: there is currently a bug in bignums multiplication)..

5.2.1.2 floatings

Every character sequence (that is not inside a string or a symbol interned via the “backslash”
macro-char) holding a “.” will be considered as expressing a floating point.

Conclusion

Motorola IEEE “extended-precision floating point” standard is actually used. It allows to express
numbers between 1.9*10-4951 and 1.1*104932 . There are between 19 and 20 significative digits.
It is also possible to denote forbidden operations (divide by zero…) generating “NaNs3” or infinity.
These NaNs are not readable but are printable and used by Help (in fact your 68882).

The reading may be done using scientific notation (character “e” or “f” between mantissa and
exponent) or classic (mantissa only). The floating is always read in decimal. The mantissa, as the
exponent may follow a “+” or a “-”.

Examples: 1.123456789123456789
1.1234f-2001
-233.2e+63

5.2.2 The lists (conses)

List expression relies on parenthesis and “conses”4 (as in Lisp):

▼ The characters “(“, “)” et “|” sare for list expression and are delimiters;
▼ The empyu list will be denoted by a special symbol denoted by “()”;
▼ A cons \x(car | cdr) is represented by: (<car> | <cdr>) where <car> is the

representation of “car”…;
▼ There is a simplified notation (when the cdr is a cons or the empty list): the pairs “| (“ and

the corresponding “)” may be omitted . So, one may write: (1 | ()) or (1).

Examples: (1 | 2)
(1 2 3 4)
(1 | (2 | ()))
(1 (2 3 4) (5 (6)) 1)

5.2.3 The cells (vectors)

A vector (or cell) will be represented using special delimiters “[“ and “]”. A three elements cell
e1, e2, e3 will be represented by [<e1> <e2> <e3>]

Examples: []
[1 2 3]
[[1 2][2 3]]

5.2.4 Bit-arrays

The delimiter “%” is used to express bit-arrays. The sequence that follows should be composed of
“0” or “1”.

3NaN= Not a Number. Retourné lors de la lecture d’une séquence de caractères ne formant pas un nombre
flottant.
4structure de données comportant deux champs non typés appelés (pour des raisons historiques) CAR et CDR
(prononcé “coudair).

Conclusion

Examples: %
%11011000110110001101100011011000

5.2.5 The strings

The character “““ is used to express strings. Every character following a “““ upto the next “““
swill be included in the string (including control chars, such as carriage return, linefeed…)

5.2.6 Symbols (symbols, constants, errors…)

Every sequnce that is not in one of the previously defined syntactic domain and that does not hols
a “:” will express a simple symbol.

It is possible to force the reader to read a symbol for any sequence of character using the macro-
character “\”. So, reading the sequence“\12\” will create an interned symbol whose name will be
“12”.

Moreover, symbols are organized along a tree (as the packages tree in Le_Lisp) for the user use. A
simple symbol will have “()” as a father. It is possible to denote a son of a symbol (simple or not)
by inserting a “:” and the son’s name. So:

a ------------------------------ symbol “a”, father “()”
a:b --------------------------- symbol “b” , father “a”, , father “()”
a:b:c:d:e------------------symbol “e” , father “d”…

Symbols ahave many different uses in Help:

▼ symbols-- ‘a
▼ variable-- a
▼ keywords-------------------------------------- (lambda (x) (1+ x))
▼ macro-expressions------------------------ (defmacro useless (lambda (t) ‘()))
▼ errors--- ?:var-undef
▼ constants-------------------------------------- (1+ 1)

IThere is no specific micro-syntax for each of these. The user may usually give the type of a
symbol using specific closures or syntactic forms.

Upon startup, several symbols are already defined.

5.2.6.1 Keywords:

The following symbols are reserved keywords:

lambda cond define =! begin step nomemo
defmacro quote let letrec bindings warn

5.2.6.2 Errors:

Conclusion

The following table give the list of predefined errors . Usually, (this is not compulsory) an error is
a son of the symbol” ?”.

Symbole Definition
?Undefined error

?:too-argsToo many arguments
?:few-argsToo few arguments
?:bad-typeBadly types arguments
?:bad-exprBad expression
?:syn-keywKeyword use forbidden here
?:syntx-erGeneral syntax error
?:mem-fullThe heap is full
?:no-applyThe object us not applicable
?:indx-outIndex out of bounds
?:strange!A strange error has occurred
?:overflowOverflow
?:cb-breakBreak
?:lispstckThe Lisp stack has been destroyed
?:contstckThe control stack has been

destroyed
?:varundefUndefined variable
?:stckfullPiles pleines (collision)
?:maxlengtMax length reached
?:io-errorI/O error

?:eof-errorEnd of file error
?:dead-contChronologic continuation is dead

5.2.6.3 Constants:

Many constants are predefineds. Most of them denote closures and will be described in §5.4.

The symbol “()” is a constant whose value is itself that denotes the empty list;
Thesymbol “†” is a constant whose value is itself that denotes the boolean TRUE;
Thesymbol “ƒ” is a constant whose value is itself that denotes the boolean FALSE;

Pay attention that the symbol “()” is considered as TRUE in HELP. Only the boolean “ƒ” denotes
FALSE.

5.2.7 Unreadable objects

Among all the objects existing in memory, some are “unreadable”. These are the:

▼ Environments (printable);
▼ Closures (printable);
▼ Code (partially);

Conclusion

▼ I/O Units (unprintable);
▼ Suspended forms (unprintable);

5.2.8 Special characters and delimiters

Conclusion

The following table gives the special characters, whether they are delimiters, ad their
corresponding (if they exits) delimiters and role. When a number is given, It is the ascii code of
the character. These characters are modifiable by the user (Cf §4.2.6).

C Délim Corresp Role
(Yes) | list, cons
) Yes (| list, cons
| Yes () delimier between CAR and CDR in a cons
[Yes] start of vector
] Yes [end of vector
% Yes delim. start of bit-array
“ Yes “ start and end of string
; Yes 13 start of comment on a single line
{ Yes } start of comment
} Yes { end of comment
32 Yes space: delimiter
13 Yes carriage return: delimiter
\ Yes \ force interning

5.3 The primitive expressions in Help and derived forms

Every program Help is made of a sequence of definition expressed through define.

(define <ident> <any>) Syntactic form x

Allows to define <ident> as denoting <any>.

(define <closdef> <body>) Syntactic form x

allows to define a closure. <body> is a sequnce of expression (body of the closure). <closdef> is a
a list whose CAR should be an identifier (name of the closure defined) . The CDR should be a
formal parameters “list” (Cf. lambda)

5.3.1 Litteral references (constants, “quoted” symbols …)

(quote <any>) Syntactic form x
(’ <any>) Syntactic form x

Return the object whose external representation is <any>. It is used to reference litterals in the
Help code. (quote <x>) may be abbreviated to ‘<x>.

(quote (+ 1 2)) ➟ (+ 1 2)

<constant> Syntactic form x
Conclusion

Conclusion

Return the objetc whose external representation is <constant> (constant objects). It is used to
reference litterals in the Help code.

† ➟ †
1 ➟ 1

5.3.2 Variables references

<ident> Syntactic form x

The value returned is the value found at the location which is bound to the identifier in the
current environment. If the variable is not bouns, the error?:varundef is returned.

5.3.3 Closure application

(<operator> <operand1>…) Syntactic form x

Closure application is simply expressed by writing the operator (closure) and the operands
between parenthesis. The <operator> is evaluated, but the <operand1>… will be evaluated only if
they are “used” (call by need).

(+ 1 2) ➟ 3
((0 (list - +)) 32 10) ➟ 22

Many closures are predefined. The user may define new closures through the syntactic form
(lambda…). Please note that fixsize numbers are actually considered as closures. The positive
fixnums select the “nth” element in a sequence (bit array, list, vector…). Negative fixnums return
the “-nth” cdr of a list.

(0 ‘[a b c]) ➟ a
(-3 ‘(z y x w v u)) ➟ (w v u)

5.3.4 Closure creation

(lambda <formals> <body>) Syntactic form x

Returns a closure holding (among others) the environment that existed when the lambda
expression was defined (captured environment). When the closure will be applied to effective
arguments, its <body> will be evaluated in the capturated environment extended with the bindings
of the <formals> to fresh locations holding the effective arguments. The value returned is the value
of the last expression evaluated. If the <body> is empty, error ? is returned.

<formals> should take one of the following form:

• (<ident1> … <identn>): The closure will have fixed arity “n”. When applied, each parameter
will be bound to each argument.

Conclusion

• <ident>: The closure will have variable arity. When applied the formal will be bound to a
newly allocated list of the arguments.

• (<ident1> … | <identn>): The closure will have variable arity, (n-1) arguments at least. The
last formal parameter will be bond to a newly allocated list of exceding arguments.

<body> is a sequence of expression.

(lambda(x) x) ➟ {Closure (x) x) in ()}

Conclusion

((lambda x x) 1 2 3) ➟ (1 2 3)

5.3.5 Conditional

The syntactic form COND is only there for efficiency (considering its frequent use). A fully
compiled release of Help would allow the suppression of this form.

(cond <clause1>…) Syntactic form x

Each <clause> is a sequence of two expressions, the last <clause> may be restricted to a sequence
of one expression.

The first expression of the first <clause> is evaluated. If it returns a FALSE value (ƒ), then the
following clause is handled (if any, oterwise it returns ƒ). If it returns an error, then this error is
returned, else the vlaue of the second expression in the <clause> is returned (if any, else first
expression value is returned).

(cond (=? 2 (1+ 1)) “Yes” “No way”) ➟ Yes
(cond (>? -3 0) -3
 (<? -3 -5) (- 0 -3)
 (+ 2 2)) ➟ 4

5.3.6 Assignment

(=! <ident> <any>) Syntactic form x

The location whose <ident> is bound to will receive the value of <any> in the current environment.
This Syntactic form is one of the “non functionnal” feature of Help.

(=! x 2) ➟ 2
(=! z (cons 1 z)) ➟ (1 1 1 1 1 1 1 …)

5.3.7 Non-memoïzing suspension

(nomemo <boolean> <any>…) Syntactic form x

The forms <any> are evaluated one after the other. According to <boolean> value, every suspension
that could be created by these forms will be a definitive (true) or memoïzed suspension… One
should note that definitive (i.e. not memoïzed) suspensions are nevertheless easily “memoïzable”
from “above”. If a suspension s1 created by nomemo is itself classically suspended (getting s2) , any
access to the suspension s2 will induce s1 evaluation and the memoïzation of its value in s2
forbidding any new evaluation of s1 via s2.

(define z
 (nomemo † (cons (print “CAR”)
 (print “CDR”))))

Conclusion

z ➟ (? | ?)
prints “CAR” et “CDR”

z ➟ (? | ?)
 prints “CAR” et “CDR”

(define zz (list z z))
zz ➟ ((? | ?) (? | ?))

prints “CAR”, “CDR” (twice)
zz ➟ ((? | ?) (? | ?))

prints nothing…

Conclusion

5.3.9 Environment

(bindings) Syntactic form x

Returns the current environment. If it is the top level environment, the symbol () is returned. This
form can NOT be a closure because the body of the closures are evaluated in the captured
environment, but not in the current environment wich is inaccessible for them.

(bindings) ➟ ()
((lambda(x) (bindings)) 1) ➟ {Env: «x=1» Then ()}

5.3.10 Defining macros

(defmacro <any>) Syntactic form x

Allows the definition of macros The syntax is identical to define syntax. When interpreting, any
macro call is physically replaced (via car=!) by the value returned upon the first evaluation
(displacing macros). When the compiler is used, macros are expanded when compiling. It is
therefore necessary to define macros before their use.

(defmacro (mapause m)
 `(begin (prin “Pause à “)
 (print ‘,m)
 (pause)))
(define (test n)(mapause test)(1+ n))
Après a exécution:
test ➟ {Closure:((n) (begin (prin “Pause à “)
 (print ‘test)
 (pause)) (1+ n)))…}

5.3.10 Defining external functions

(defext <fic><seg><nom><str> | <par>) Syntactic form x

Allows the importation of external functions (assembly langage for example, see in the “Divers”
folder). The external code (written under MPW) must follows conventions given in the
§4.5.1.3.1.2, qnd must be linked to the LibHelp.o library…(see folder “Divers”).
The parameters are:

▼ <fic>-------------------------file name (CODE ressources);
▼ <seg>-------------------------name of the segment containing the closure code;
▼ <nom>-------------------------name for the closure to be defined
▼ <str>-------------------------stricness bit vector (Cf setstrict)
▼ <par>-------------------------parameters of the external closure (as for define)

5.3.11 Creating bindings

Conclusion

(let <bindings> <body>) Syntactic form x

The <body> is evaluated in the current environment extended with the <bindings>. The scope of the
bindings is limited to the <body>.

<bindings> is a vector of lists that can take the following forms:

Conclusion

• (<ident> <any>): <ident> will be (lazily) bound to the value of <any>.
• (<closdef> <corpsclos>): allows to define a local closure (non recursive closure because of

the scope of the bindings) more easily than by using a lambda expression. <corpsclos> is a
sequence of any expressions, <closdef> is a list whose CAR should be an identifier (name of
the closure defined) and whoseCDR should be a “list” of formal parameters (Cf. lambda).

(let [(x 1.1)
 ((double n)(+ n n))]
 (double x)) ➟ 2.200000000000000e+00

(letrec <bindings> <body>) Syntactic form x

The syntax is the same as for the let but the scope of the bindings created is equal to the lexical
union of the <bindings> and the <body>. It is possible (as for the let) to define local functions (that
can, here use recursion). Because of lazyness, there is no problem (as there are in Scheme by the
way) in defining objetcs that immediately refer to identifier bound by the letrec .

(let [(r (fib 20)) ;error en Scheme
 ((fib n) ;(fib undefined function)
 (cond (<? n 2) 1
 (+ (fib (1- n))(fib (- n 2)))))]
 r) ➟ 10946

5.3.12 Sequence

(begin <any1>…) Syntactic form x

The <any1> are evaluated one after the other…. Allows to group evaluations so that they may all be
executed “at the same time”. This is especially useful when interacting with the user.

(let [(x (begin (prin “Entrez x”)(read)))]
 (traiter x)) ➟ …according to traiter

5.3.12 Debugging

The error handling system of Help, because of the lazyness (that allows to build objects partially),
does not stop the evaluation upon error. According to the “evaluation mode”, an error may:

▼ return an error object which is passed to the current continuation (ƒ mode);
▼ return an error object which is passed to the current continuation and print an error

message on the stder input/output unit (() mode);
▼ put the Help evaluator in a debug mode († mode).

(pause) Syntactic form x

Simply stop the cuurent evaluation and give the user the opportunity to use a new READ-EVAL-
PRINT loop with a prompt whose form will be “{n}† “ where n is the depth of pauses. The loop

Conclusion

will be abandonned as soon as the symbol † is evaluated (therefore, and because of the prompt
appearance, it is enough to type the ENTER key to exit the loop). Any action is possible during the
loop . The value returned is the symbol ? (undefined error).

(warn <ident> <any1>…) Syntactic form x

Conclusion

Evaluate the <any1>… in the evaluation mode specified by <ident> (Cf 5.3.12). One should note that
suspended form that may be build will efectively be evaluated in the specified mode upon access,
even if one as gone out of the warn expression (suspended form do capture evaluation mode).

The debugger is actually a simple READ-EVAL-PRINT (Cf pause) that may be abandonned (to
resume execution) by reading the symbol † (true). The expression and the value that (probably)
are the reason for the error are printed. The closures and syntactic forms bindings, envar, stack…
allow the user to look at the environment, the stack, values… The closure break will bring the user
back to TopLevel. One should note that evaluating (under debugger) may force suspensions that
should not have been forced and therefore may modify the program behaviour. A not fully
functionnal program may be greatly disturbed by such inspections.

(warn ƒ (+ 0 ‘a)) ➟ ?:bad-type
et aucun message d’error

(step <boolean> <any1>…) Syntactic form x

According to <boolean> value, will (or not) evaluate the <any1>… step by step. One should note
that suspended form will be evaluated step by step even if the control is out of the step scope
(suspensions capture the current evaluation mode, including step or not mode). At each step, the
function step? (user defined) is called with the form being evaluated and the current
environment. If the value returned is flase (ƒ), step by step evaluation does not actually take effect
for this form. Otherwise, the closure stepin is called with he form being evaluated and the current
environment. The value returned is then given along with the value of the stepped through form
to the stepout (user defined) closure. Predefined step?, stepin and stepout closures are proposed
in the “Stepper” file. The main purpose of the boolean argument is to desactivate stepping locally.

Example:

(step † (+ 1 2)) ➟ 3 and the following session (for example):
-> "(+ 1 2)"{1}†
-> "+"{1}†
<- "{Closure:{Code 680xx for +} Env:()}"{1}†
-> "1"{1}†
<- "1"{1}†
-> "2"{1}†
<- "2"{1}†
<- "3"{1}†
{ = 3 }

The step by step mode is really very useful and powerful using the step?, stepin and stepout
closures (and to the (step ƒ …) form that allows local steppin’ desactivation).

For example, using the following definition for step?:

(define (step? f e)
 (not (number? f)))

The previous step by step evaluation becomes:
Conclusion

(step † (+ 7 12)) ➟ 19 and the following session (for example):
1 -> "(+ 7 12)"{1}†
2 -> "+"{1}†
2 <- "{Closure:{Code 680xx for +} Env:()}"{1}†
1 <- "19"{1}†
{ = 19 }

5.4 Predefined closures in Help

Conclusion

5.4.1 Booleans

The two constants † and ƒ denote booleans. Nevertheless, in ANY test actually made by Help, any
value that is not equal to ƒ is considered as true (except for errors, in this case the test fails and
returns the error itself). Pay attention the the EMPTY LIST is actually true !

(not any) Closure:ProcN 1

Returns † (true) if any is equal to ƒ, otherwise returns ƒ.

(not †) ➟ ƒ
(not 3) ➟ ƒ
(not (list 1 2)) ➟ ƒ
(not ƒ) ➟ †
(not ‘()) ➟ ƒ

(boolean? any) Closure:ProcN 1

Returns † (true) if any is equal to † or ƒ. Returns ƒ otherwise.

(boolean? †) ➟ †
(boolean? 3) ➟ ƒ

5.4.2 Equivalence predicates

The three equivalence predicates eq?, =? and equal? define three equivalence relations (reflexive,
symetric transitive) on the Help objects. The relation defined by eq? is included in the relation
defined by =? itself included in the relation defined by equal?.

(eq? any1 any2) Closure:ProcN 2

Returns † (true) if the two objetcs are actually the same one (i.e exist at the same location in
memory). Returns ƒ otherwise. Because of their unicity, this predicate is especially useful for
symbols.

(eq? ‘a ‘a) ➟ †
(eq? 1 2) ➟ ƒ
(eq? 1 1) ➟ undefined, probably false

(neq? any1 any2) Closure:ProcN 2

Returns ƒ (false) if the two objetcs are actually the same one (i.e exist at the same location in
memory). Returns † otherwise. Because of their unicity, this predicate is especially useful for
symbols.

(neq? ‘a ‘a) ➟ ƒ
(neq? 1 2) ➟ †

Conclusion

(neq? 1 1) ➟ undefined, probably true

(=? any1 any2) Closure:ProcN 2

Returns † (true) if both objects are the same (i.e same address in memory) or if they have the
same content (according to eq? for data structures (eg. conses, vectors) referencing other
objects). Returns ƒ otherwise. This predicate is especially useful for numbers, bit-arrays and
strings and in some cases for vectors or conses (lists or cells of symbols…).

Conclusion

(=? ‘a ‘a) ➟ †
(=? 1 2) ➟ ƒ
(=? 1 1) ➟ †
(=? %01 %01) ➟ †
(=? ‘[a a] ‘[a a]) ➟ †

(<>? any1 any2) Closure:ProcN 2

Returns ƒ (false) if both objects are the same (i.e same address in memory) or if they have the
same content (according to eq? for data structures (eg. conses, vectors) referencing other
objects). Returns † otherwise. This predicate is especially useful for numbers, bit-arrays and
strings and in some cases for vectors or conses (lists or cells of symbols…).

(<>? ‘a ‘a) ➟ ƒ
(<>? 1 2) ➟ †
(<>? 1 1) ➟ ƒ
(<>? %01 %01) ➟ ƒ
(<>? ‘(a | b) ‘(a | b)) ➟ ƒ

(equal? any1 any2) Closure:ProcN 2

Returns † (true) if both objects are equivalent (in the sens of =?) or, otherwise, if their content is
equivalent (in the sens of equal?). Returns ƒ otherwise.

(equal? ‘a ‘a) ➟ †
(equal? 1 1) ➟ †
(equal? ‘(a b) ‘(a b)) ➟ †

(nequal? any1 any2) Closure:ProcN 2

Returns ƒ (false) if both objects are equivalent (in the sens of =?) or, otherwise, if their content is
equivalent (in the sens of equal?). Returns † otherwise.

(nequal? ‘a ‘a) ➟ ƒ
(nequal? 1 1) ➟ ƒ
(nequal? ‘(a b) ‘(a b)) ➟ ƒ

5.4.3 Lists and conses

A cons (or pointed pair) is an heterogenous data structures made of two fields called (for good old
reasons i won’t bother you with…) CAR and CDR (pronounce could’er). This structures are
actually mutable. Accessing the fiels is done through “numerical selectors”.

The main use of conses is to represent lists. A list is defined as being either the empty list () or a
cons whose CDR is a list.
The empty list () is a special object actually denoted by a constant symbol. It contains no element

Conclusion

and its length is 0.

(list? any) Closure:ProcN 1

Returns ƒ (false) if any is not a list (i.e. a cons or the symbol (), dotted lists are considered as
lists). Returns † otherwise.

(list? ‘()) ➟ †
(list? ‘(1 2 3)) ➟ †
(list? 3) ➟ ƒ

Conclusion

(cons? any) Closure:ProcN 1

Returns † (true) if any is a cons. Returns ƒ otherwise.

(cons? ‘()) ➟ ƒ
(cons? ‘(1 2 3)) ➟ †
(cons? 3) ➟ ƒ

(atom? any) Closure:ProcN 1

Returns ƒ (false) if any is a cons. Returns † otherwise.

(atom? ‘()) ➟ †
(atom? ‘(1 2 3)) ➟ ƒ
(atom? 3) ➟ †

(cons any1 any2) Closure:ProcN 2

Returns a newly allocated cons whose CAR contains any1 value and whose CDR contains any2
value. The cons is different 5 of any existing object.

(cons 1 2) ➟ (1 | 2)
(cons ‘a ‘()) ➟ (a)
(cons ‘(a b) ‘c) ➟ ((a b) | c)

(car=! cons any) Closure:ProcN 2

Allows to write tha value ofany in the CAR of a cons. Because of lazyness, unexpected effects may
be observed. This closure is therefore very dangerous. It may disappear from future releases.

(car=! ‘(1 2) 3) ➟ (3 2)
(car=! %1010 3) ➟ ?:bad-type

(cdr=! cons any) Closure:ProcN 2

Allows to write tha value ofany in the CDR of a cons. Because of lazyness, unexpected effects may
be observed. This closure is therefore very dangerous. It may disappear from future releases.

(cdr=! ‘(1 2) 3) ➟ (1 | 3)
(cdr=! %1010 3) ➟ ?:bad-type

(null? any) Closure:ProcN 1

Returns ƒ (false) if any value is not equal to the empty list. Returns † otherwise.

5 in the sens of eq?, there is no “hash-consing”.
Conclusion

(null? ‘()) ➟ †
(null? ‘(1 2 3)) ➟ ƒ

(list any …) Closure:NProc 0

Returns the list of the arguments values.

(list ‘ts (+ 24 3) ‘65) ➟ (ts 27 65)

Conclusion

(list) ➟ ()

(length list) Closure:ProcN 1

Returns the length of list. The length of a list is defined by:
▼ the length of the empty list is 0;
▼ the length of a cons is 1 plus the length of its CDR.

(length ‘()) ➟ 0
(length ‘(1 2 3)) ➟ 3
(length ‘(mcl (1 2 3) (a b))) ➟ 3
(length 1) ➟ ?:bad-type

(append list1 any) Closure:ProcN 2

Returns a list made of the elements of the first listlist1 followed by the elements of the list any.
The second arg. (any) may be something else than a list.

(append ‘(1 2 3) ‘(4 5 6)) ➟ (1 2 3 4 5 6)
(append ‘() ‘(a b)) ➟ (a b)
(append ‘(a b) ‘(c | d)) ➟ (a b c | d)

(∞ any) Closure:ProcN 1

Returns an infinite list whose elements are all equal to the value of any.

(∞ 1) ➟ (1 1 1 1 1 1…)
(∞ (+ 2 3)) ➟ (5 5 5 5 5 5…)

(… number) Closure:ProcN 1

Returns a n infinite list made of the integers after number.

(… 1) ➟ (1 2 3 4 5 6…)
(… (- -2 1)) ➟ (-3 -2 -1 0 1 2…)

5.4.4 Symbols

The symbols main property is that two identical symbols (micro-syntax) are actually identical in
memory (in the sens of eq?). This property is very useful to represent variables, constant
identifiers, keywords. Help also use symbols to denote errors.

(symbol? any) Closure:ProcN 1

Returns † (true) if any is a symbol, otherwise returns the object any.

Conclusion

(intern symbol any) Closure:ProcN 2

Returns a symbol whose name is any value (that should be a string or a symbol) and whose father
(in the symbols hierarchy) is symbol.

(intern ‘père “fils”) ➟ père:fils
(intern ‘père ‘fils) ➟ père:fils

5.4.5 Numbers

Conclusion

According to their position, numbers may be interpreted as closures (numerical selectors) or as
numerical data. This double point of view may be considered as a semantical weakness but is of
great ease (very useful from a pragmatical point of view).

For numerical selectors see §5.3.

(+ number number) Closure:ProcN 2

Returns the sum of its arguments values. If one of the numbers is a floating, the result will be
floating.

(+ 10 10) ➟ 20
(+ 1 2.312) ➟ 3.312000000000000e+00
(+ 9999999999 1) ➟ 10000000000
(+ 1 ‘a) ➟ ?:bad-type

(- number number) Closure:ProcN 2

Returns the difference of its arguments values. If one of the numbers is a floating, the result will
be floating.

(- 10 10) ➟ 0
(- 2.312 1) ➟ 1.312000000000000e+00
(- 9999999999 1) ➟ 9999999998
(- 1 ‘a) ➟ ?:bad-type

(1+ number) Closure:ProcN 1

Returns one plus its argument value. If the number is a floating, the result will be floating.

(1+ 10) ➟ 11
(1+ %) ➟ %00000000000000000000000000000001
(1+ ‘a) ➟ ?:bad-type

(1- number) Closure:ProcN 1

Returns its argument value minus one. If the number is a floating, the result will be floating.

(1- 10) ➟ 9
(1- ‘a) ➟ ?:bad-type

(* number1 number2) Closure:ProcN 2

Returns the product of its arguments values. If one of the numbers is a floating, the result will be
floating.

(* 10 23) ➟ 230

Conclusion

(* ‘a 2) ➟ ?:bad-type
(* 1e10 2) ➟ 2.000000000000000e10

(/ smallnum1 smallnum2) Closure:ProcN 2

Returns the result from the division of its arguments values. If one of the numbers is a floating,
the result will be floating. If both numbers are integers, the result will be an integer.

(/ 23 10) ➟ 2
(/ ‘a 2) ➟ ?:bad-type
(/ 23 10.0) ➟ 2.300000000000000e0

Conclusion

(modulo fix1 fix2) Closure:ProcN 2

Returns the remainder of the division of fix1 value by fix2 value.

(modulo 23 10) ➟ 3
(modulo ‘a 2)➟ ?:bad-type

(<? number1 number2) Closure:ProcN 2

Returns ƒ if number1 value is not strctly less than number2 value. Returns number1 value
otherwise.

(<? 23 10) ➟ ƒ
(<? ‘a 2) ➟ ?:bad-type
(<? 12 20) ➟ 12

(>? number1 number2) Closure:ProcN 2

Returns ƒ if number1 value is not strctly more than number2 value. Returns number1 value
otherwise.

(>? 23 10.0) ➟ 23
(>? ‘a 2) ➟ ?:bad-type
(>? 20 12345678987654321) ➟ ƒ

(zero? number) Closure:ProcN 1

Returns ƒ if number value is not equal to zero. Returns number otherwise.

(zero? 0) ➟ 0
(zero? ‘a) ➟ ?:bad-type

(float number) Closure:ProcN 1

Converts number value to floating.

(float 0) ➟ 0.00000000000e+0

(cos number) Closure:ProcN 1

Returns the cosinus (floating) of number value in radians.

(sin number) Closure:ProcN 1

Returns the sinus (floating) of number value in radians.

(tan number) Closure:ProcN 1
Conclusion

Returns the tangent (floating) of number value in radians.

(acos number) Closure:ProcN 1

Returns the arc-osinus (floating) of number value in radians.

(asin number) Closure:ProcN 1

Conclusion

Returns the arc-sinus (floating) of number value in radians.

(atan number) Closure:ProcN 1

Returns the arc-tangent (floating) of number value in radians.

(cosh number) Closure:ProcN 1

Returns the hyperbolic cosinus (floating) of number value.

(sinh number) Closure:ProcN 1

Returns the hyperbolic sinus (floating) of number value.

(tanh number) Closure:ProcN 1

Returns the hyperbolic tangent (floating) of number value.

(atanh number) Closure:ProcN 1

Returns the hyperbolic arc-tangent (floating) of number value.

(log number) Closure:ProcN 1

Returns the neperian logarithm (floating) of number value.

(exp number) Closure:ProcN 1

Returns the exponential (floating) of number value.

(sqrt number) Closure:ProcN 1

Returns the square root (floating) of number value.

(ibase fixpos) Closure:ProcN 1

Modifies lthe current reading numerical base of the reader. The fixpos value should be between 2
and 36. Returns its argument value. Cf §5.2.1.

(ibase 10) ➟ 10

5.4.6 Closures

The closures are made of a “code” that is waiting for a sequence of expressions and from an
environment. For optimisation, each closure contains a 16 bits bit-array to express the closure
strictness with respect to the 15 first arguments (15 first bits) and the following one (last bit).
This bit-array is automatically filled by the compiler (to some extent only), but not at all by the
interpreter.

Conclusion

(apply applicable list) Closure:ProcN 2

Applies the closure or the numerical selector applicable to the list of argument list.

(apply 1 ‘((a))) ➟ a

Conclusion

(apply + ‘(1 2)) ➟ 3

(getcode closure) Closure:ProcN 1

Returns the code (interpreted or compiled) of the closure.

(getcode 1+) ➟ {Code 680xx for 1+}
(getcode (lambda(x)x)) ➟ ((x) x)

(getenv closure) Closure:ProcN 1

Returns the closure captured environment.

(getenv 1+) ➟ ()
(getenv
 (let [(x 2)]
 (lambda(x)x))) ➟ {Env: «x=2» Then ()}

(getstrict closure) Closure:ProcN 1

Returns the bit-array associated to the closure that gives the closure strictness (see above).

(getstrict cons) ➟ %00000000000000000000000000000000
(getstrict +) ➟ %11000000000000000000000000000000

(setstrict closure bitarray) Closure:ProcN 2

Allows the user to give the strictness of the closure . May lead to important (10-20%)
improvements in execution time and memory usage if strict.

5.4.7 Macros

(expand list) Closure:ProcN 1

The list should be a “quoted” macro call. Returns the result of the macro expansion.

(expand ‘(quasiquote (a (unquote b)))) ➟ (list ‘a b)

5.4.8 Cells (or vectors)

The vectors are heterogenous structures indexed by integers. These structures (as conses) are
mutable. Because of lazyness, mutation is potentially dangerous.

When accessed using “nemerical selectors”, vectors are indexed from 0 (first element) to the
vector length minus one. the length of a vector is obtained using closure blength and then by
substracting one from the result.

Conclusion

(cell? any) Closure:ProcN 1

Returns ƒ (false) if any is not a vector, otherwise returns the vector itself.

(cell? 23) ➟ ƒ
(cell? [1 2 3]) ➟ [1 2 3]

(cell any …) Closure:NProc 0

Conclusion

Returns a vector whose content is any ….

(cell 0 1 2) ➟ [0 1 2]
(cell ‘d ‘e 1 ‘(a) [1]) ➟ [d e 1 (a) [1]]

(makecell fixpos) Closure:ProcN 1

Returns a vector having size fixpos and whose fields are all initialized to ?.

(makecell 2) ➟ [? ?]

(cell=! vector fixpos any) Closure:ProcN 3

Writes any in the vector, position fixpos. Returns the vector. This non-funtionnal closure has
unexpected effects when used (because of Help lazyness).

(cell=! ‘[a b c] 0 0) ➟ [0 b c]
(cell=! [0 1 2] 3 1) ➟ ?:indx-out

5.4.9 Environments

The Syntactic form bindings allos one to access the current environnement. Some closures allows
then to handle these environments, or to create new ones. Numerical selectors allows one to
access environment contents (non empty env.). If N is the blength of the environment, the
following indexes are valid:

• Index 0: the lower environment (previous frame);
• from 1 to (N-2)/2: the values of the variables bound in the environment;
• from (N-2)/2+1 to N-1: the identifiers of the variables bound.

Note that the compiler may rely on so-called “short-environments” that do not contains names
variables, only their values.

(environment? any) Closure:ProcN 1

Returns ƒ (false) if any is not an environment, otherwise returns the environment itself. as the
Syntactic form bindings returns () if the current enviroement is the toplevel environment, the
empty list is considered to be an environment.

(environment? 23) ➟ ƒ
(environment? ‘()) ➟ ()
(environment (let [(x 2)] (bindings))) ➟ {Env: «x=2» Then ()}

(binding=? ident environ) Closure:ProcN 2

Returns the value of ident in environ . If the variable is undefined in the environment, The error
?:varundef is returned.

Conclusion

(binding=? ‘1+ ‘()) ➟ {Code6800x for 1+}
(binding=? ‘x (let [(x 2)] (bindings))) ➟ 2
(binding=? ‘a ‘()) ➟ ?:varundef

(binding=! ident environ any) Closure:ProcN 3

Modifies the value of ident in environ. Returns the value of environ.

Conclusion

(binding=! ‘1+ ‘() 2) ➟ ()
(binding=! ‘a ‘() 2) ➟ ()

(makeenv ident1 …) Closure:NProc 0

Returns an environment where the ident are all bound to ?. This environment is automatically
linked to the current environnement (the lower frame will be the current env).

(makeenv ‘a ‘b) ➟ {Env: «a=?» «b=?» Then ()}
(makeenv 1) ➟ ?:bad-type

(envar environ) Closure:ProcN 1

Returns a vector that contains all the identifiers of the environment environ. Especially useful
during debugging to have a look at an anvironment without forcing all the values referenced in
the environment.

(envar (makeenv ‘a ‘b)) ➟ [a b]

5.4.10 Bit-arrays

Bit arrays are especially useful to represent sets (and in AI for every “propositionnal logic
oriented” software: a clause is simply two sets of litterals, i.e. two bit-arrays). The set-operations
are efficiently managed (intersection, union…). Pay attention that bit-set operations are
destructive for efficiency. A functionnal behaviour may be obtained using closure bcopy.

Bit-array reading is obtained through “numerical selectors” (index starting at 0).

(bitarray? any) Closure:ProcN 1

Returns ƒ (false) if any is not a bit-array, otherwise returns the array itself.

(bitarray? 23) ➟ ƒ
(bitarray? %)➟ %

(makebitarray posfix) Closure:ProcN 1

Returns a bit-array whose length is at least equal to posfix , all bits cleared.

(makebitarray 0) ➟ %
(makebitarray 10) ➟ %00000000000000000000000000000000

(bitand! bitarray1 bitarray2) Closure:ProcN 2

Logical AND between bitarray1 and bitarray2. The result is stored in bitarray2. If the arrys have
not the same siwze, the operation is restricted to the smaller argument. This operation is
destructive, use bcopy if you need a “functionnal” behaviour.

Conclusion

(bitand! %0011 %0101) ➟ %00010000000000000000000000000000

(bitor! bitarray1 bitarray2) Closure:ProcN 2

Logical OR between bitarray1 and bitarray2. The result is stored in bitarray2. If the arrys have
not the same siwze, the operation is restricted to the smaller argument. This operation is
destructive, use bcopy if you need a “functionnal” behaviour.

Conclusion

(bitor! %0011 %0101) ➟ %01110000000000000000000000000000

(bitxor! bitarray1 bitarray2) Closure:ProcN 2

Logical XOR between bitarray1 and bitarray2. The result is stored in bitarray2. If the arrys have
not the same siwze, the operation is restricted to the smaller argument. This operation is
destructive, use bcopy if you need a “functionnal” behaviour.

(bitor! %0011 %0101) ➟ %01100000000000000000000000000000

(bitnot! bitarray) Closure:ProcN 1

Logical NOT of bitarray. The result is stored in bitarray. This operation is destructive, use bcopy
if you need a “functionnal” behaviour.

(bitnot! %01)➟ %10111111111111111111111111111111

(bitcount bitarray) Closure:ProcN 1

Returns the number of bits set in bitarray. Execution time in the order of the number of bits set.

(bitcount %0101) ➟ 2

(bitfind bitarray) Closure:ProcN 1

Returns the position of the first bit set in bitarray (if any). Returns ƒ otherwise.

(bitfind %0001) ➟ 3
(bitfind %) ➟ ƒ

(bitset! bitarray fixpos) Closure:ProcN 2

Sets (to 1) the bit at the position fixpos of bitarray . Returns the bit-array. This operation is
destructive, use bcopy if you need a “functionnal” behaviour.

(bitset! %0 0) ➟ %10000000000000000000000000000000

(bitclr! bitarray fixpos) Closure:ProcN 2

Clears (to 0) the bit at the position fixpos of bitarray . Returns the bit-array. This operation is
destructive, use bcopy if you need a “functionnal” behaviour.

(bitclr! %1 0) ➟ %00000000000000000000000000000000

(bitchg! bitarray fixpos) Closure:ProcN 2

Flip the bit at the position fixpos of bitarray . Returns the bit-array. This operation is

Conclusion

destructive, use bcopy if you need a “functionnal” behaviour.

(bitchg! %0 0) ➟ %10000000000000000000000000000000

(zero? bitarray) Closure:ProcN 1

Returns ƒ if one of the bits of bitarray is set. Returns bitarray otherwise.

(zero? %00010) ➟ ƒ
(zero? %000) ➟ %00000000000000000000000000000000

Conclusion

5.4.11 Entrées-Sorties

All input/output is done through so-called “input/output units”. These units may denote a file or a
text window. As in C, the variables stdi, stdo et stder denote the units (resp.) for input, output
and error. Upon startup, stdi and stdo are bound to the “current selected window” and stder to
the “Transcript” window. It is possible to modify the content of this variables to read/write to
files…

(read) Closure:ProcN 0

Reads a Help expression in the input-output unit in stdi. Returns the internal representation of
the expression read.

(print any) Closure:ProcN 1

Print the external representation of the object any on the current output i/o unit (contained in the
variable stdo) and then prints a carriage return. One should note that Help printer will force every
suspended form in the object (so as to print the object in its completeness). If you need to print an
object without forcing its content, use closure printdebug. Returns ?.

(prin any) Closure:ProcN 1

Print the external representation of the object any on the current output i/o unit (contained in the
variable stdo). One should note that Help printer will force every suspended form in the object (so
as to print the object in its completeness). If you need to print an object without forcing its
content, use closure printdebug. Returns ?.

(prinlength fixpos) Closure:ProcN 1

The max. printing length (in number of printed objects) is set to fixpos. Especially useful to print
(partially) infinite objects. Returns the value of its argument.

(prindepth fixpos) Closure:ProcN 1

The max. printing depth (in number of printed objects) is set to fixpos. Especially useful to print
(partially) infinite objects. Returns the value of its argument.

(openi string) Closure:ProcN 1

Opens a file for reading only. The path is given in string . It must be specified using “:” to
separate folders. The startup folder is the “default” folder. Returns an input-output unit associated
to the file.

(openi “HD:Help:bob”) ➟ «IO-Unit»

Conclusion

(openo string) Closure:ProcN 1

Opens a file for writing only. The path is given in string . It must be specified using “:” to
separate folders. The startup folder is the “default” folder. Returns an input-output unit associated
to the file.

(openo “HD:Les:deux-pierre(s)”) ➟ «IO-Unit»

Conclusion

(close iounit) Closure:ProcN 1

Closes the file associated to the iounit . Returns ?. Every attempt to read/write to a closed i-o unit
will return a ?:bad-type error.

(prinio any iounit) Closure:ProcN 2

IPrint the external representation of the object any on the output i/o unit iounit. One should note
that Help printer will force every suspended form in the object (so as to print the object in its
completeness). If you need to print an object without forcing its content, use closure printdebug.
Returns ?.

(readio iounit) Closure:ProcN 1

Reads a Help expression in the input-output unit iounit. Returns the internal representation of
the expression read. Returns error ?:eof-error when end of file is reached.

(flushio iounit) Closure:ProcN 1

Flush the “buffers” of iounit. Especially useful when the io-unit is associated to a window
(multiple writers).

(load string) Closure:ProcN 1

Open the given file, read and evaluates all its content, then close the file.

5.4.12 Erreurs et gestion d’ errors

(printdebug any) Closure:ProcN 1

Prints, on the io-unit in stder, the external representation of the value of any without forcing any
of the suspensions in the object (then prints a Carriage return). A suspension is printed as a tuple
made of the suspended code and the captured environment. Returns ?.

(printdebug (cons a b)) affichera ({Susp: a in ()} | {Susp: b in ()})

(error error any) Closure:ProcN 2

Raise error error with message any. According to the current “error handling mode”, it will result
in message printing, value return or debugger call.

(error? any) Closure:ProcN 1

Returns † if the value ofany is an “error” (Cf the closure type). Returns ƒ otherwise.

Conclusion

(error? 1) ➟ ƒ
(error? (1+ ‘a)) ➟ †

(explain error) Closure:ProcN 1

Returns the error message associated to error.

Conclusion

(explain ‘?:varundef) ➟ "Variable non définie"

5.4.13 Control

Closures for control are few in Help. The introduction of escapes or explicit continuation (à la
Scheme) brings few comfort in a non-parallel lazy frame. Nevertheless, the closure force allows to
give to these facility all their original power, the primitive call/ep is used to express escapes
(efficeint, but very limited use); the closure call/cc allows to capture the current continuation (à
la Scheme).

(call/ep closure) Closure:ProcN 1

Gives to the closure (that should accept one argument) a closure of type ProcN, arity 1 that
(when called) will allow to escape from the continuation and will give its argument value to tha
call/ep continuation (as call/cc in Scheme). Nevertheless, this is only a “chronological
continuation ” whose extent is limited6 (stack overwriting); therefore, it is useful only for
“escapes” (catch/throw, tag/exit facilities).

(call/ep (lambda(k)(k 1) 2)) ➟ 1

(call/cc closure) Closure:ProcN 1

Gives to the closure (that should accept one argument) a closure of type ProcN, arity 1 that
(when called) will allow to escape from the continuation and will give its argument value to tha
call/ep continuation (as call/cc in Scheme). This continuation as unlimited extent but may need
much memory and execution time (stacks are simply copied).

(call/cc (lambda(k)(k 1) 2)) ➟ 1

(force any) Closure:ProcN 1

From a fonctionnal point of view, it is identity. However, it recursively forces all the suspensions in
the value of any. It is essentially useful to simulate the transformation of Help suspensions in
“futures” of a parallel machine and also to give back some dirty tricks (affectation, escapes…) all
their “functionnalities”…

(=! x 2) ➟ 2
(=! x (force (cons 1 x))) ➟ (1 | 2) ;but not (1 1 1 1 1 1 1 1…)
(force
 (call/cc
 (lambda(k)
 (cons 1 (k ‘Sortir))))) ➟ Sortir ;et non (1 | <teratos>)

(if any1 any2 …) Closure:NProc 0

6c’est le seul objet Help ayant une durée de vie limitée.
Conclusion

Because of Help lazyness, the conditionnal may be implemented as a closure in Help. The closure
if is the embodiement as a closure of the syntactic form cond (that is kept only for efficiency
reasons !).

(if (eq? ‘a ‘b) 1
 (=? 1 2) 2
 3) ➟ 3

Conclusion

(eval any environ) Closure:ProcN 2

In the interpreted release of Help (if a realistic compiler may exist one day), this closure evaluate
the form quelconque in the environment environ. In a compiled release, it should compile the
form any in the environment environ and then execute the code compiled. One should note that if
any is already compiled (CODE type object) , the code is immediatly executed in the environment
given. This allows an efficient EVAL execution if the forms have been precompiled (for multiple
evaluation, exemple: constraints in a CSP like constraint solver).

(eval 1 ‘()) ➟ 1
(eval (cons x x) ((lambda(x) (bindings)) ‘a)) ➟ (a | a)

(or any1…) Closure:NProc 0

Evaluates the any1… forms one after the other up to the point when one the value returned is not
false or end of the any1… Returns the value of the last form evaluated.

(or (null? ‘a) (null? ‘())) ➟ †
(or (number? ‘a) (number? 1.1)) ➟ 1.100000000000000e00

(and any1…) Closure:NProc 0

Evaluates the any1… forms one after the other up to the point when one the value returned is false
or end of the any1… Returns the value of the last form evaluated.

(and (null? ‘a) (null? ‘())) ➟ ƒ
(and (number? 10) (number? 1.1)) ➟ 1.100000000000000e00

5.4.14 System

Here are all the closures that have some accointance with memory management, operating
system…

(type any) Closure:ProcN 1

Returns the type (contained in the “tag” of the referenced block) of any value as a number (fix).
The following table, or simple application of the closure type to an object gives the type
interpretation:

integer fixed size 1 floating point number 2
bit-array 3 string 4
input/output unit 5 variable identifier (symbol) 6
constant identifier (symbol) 7 error (symbol) 8
macro (symbol) 9 primitive key-word (symbol) 10
compiled or assembly code 11 closure 12

Conclusion

cons 13 vector 14
indirection7 15 environment 16
short environnement 17 bignum 19
memoïzable suspension8 20 non-memoïzable suspension9 21

7type invisible pour l’utilisateur.
8type invisible pour l’utilisateur.
9type invisible pour l’utilisateur.

Conclusion

(type ‘a) ➟ 6
(type (+ 9999999999 1)) ➟ 19

(coerce any fixpos) Closure:ProcN 2

Physically changes the type of any in fixpos . Use type closure to get existing type. This function
may foul the GC (Garbage COllector or “Glaneur de Cellules”), that will free unexisting or
referencable blocks leading to hard errors(Bus Error, Adress Error…). Harmless type conversion
are possible between elements of the following group of types (note that coerce only changes the
type of the object, not its content).

▼ 1 2 3 4 19---------- numbers et bit-arrays
▼ 6 7 8 9 10---------- identificateurs…
▼ 16 17 14------------ environnements et vectors

(runtime) Closure:ProcN 0

Returns the time in 1/60 seconds since system boot.

(chrono any) Closure:ProcN 1

Returns a three element vector. The first one is the value of any. The next one is the excution time
(in seconds, ±1/60 second) to evaluate the form any (Pay attention to lazyness, a print or a force
may be useful to get a full evaluation) and the last one is the time used for Garbage Collection
(Glanage de Cellules). Note that chrono automatically calls the compacifier GC BEFOREevaluating
the form any to get a significant “best” time (the time to make this GC is obviously not taken into
account in the results given…). If the any form uses the GC via the closures compgc or masgc, the
result retourned will almost ignore the time taken for these GC.

(chrono (fib 20)) ➟ [10946 5.4000000000e+0 0.000000000000e+0]

(masgc) Closure:ProcN 0

Calls the memory manager to execute a “Mark and Sweep” type GC. This GC is very efficient, but
does not suppress memory fragmentation. Nevertheless it will suppress every “indirection”
blocks that could have been installed by forced closures or via the closure replace. Isolated
garbage blocks with size 1 or 2 are not collected. Symbols whose value is undefined and which are
not referencable ARE collected. The value returned is ?.

(compgc) Closure:ProcN 0

Calls the memory manager to execute a compacifying modified“Break Table” GC. This GC is
slower, but suppresses fragmentation. It also collects all “indirection” type blocks (that could have
been created via suspension forcing or replace closure). Symbols whose value is undefined and
which are not referencable ARE collected. The value returned is ?.

(blength any) Closure:ProcN 1
Conclusion

Returns the memory used by any in long words (32 bits). rhe memory used by the “tag”
associated to every object (1 LW) is not taken into account.

Conclusion

(blength ‘a) ➟ 6
(blength 2) ➟ 1

(bcopy any) Closure:ProcN 1

Returns a copy of the any . This is a simple surface copy (copy of the object itself, not of the
objects referenced by it. It should not be employed on objects whose unicity is garanteed by the
system (symbols…).

(bcopy 1) ➟ 1
(eq? (bcopy x) x) ➟ ƒ ;(suppose value(x) ≠ symbol)
(=? (bcopy x) x) ➟ † ;idem

(replace any1 any2) Closure:ProcN 2

Replace physically every occurrence (in the sens of eq?) of any1 by any2. This closure uses the
indirections to operate. Use it with MUCH care on symbols (especially ƒ, †…). Its utility is yet to be
determined, but is seems powerful…

(define x ‘(a b c)) ➟ (a b c)
(replace ‘b ‘k) ➟ k
x ➟ (a k c)

(≈) Closure:ProcN 0

Obtenu au clavier par Option-X. Returns la dernière valeur obtenue au top-level.

(openi “palmipède”) ➟ «IO-Unit»
(readio (≈)) ➟ (define (palmipede v)…)

(where any) Closure:ProcN 1

Returns the memory address of any in a fix size integer (32 bits).

(find any) Closure:ProcN 1

Returns the list of every identifier whose value in the global environment is equal (in the sens of
eq?) to the value of any. especially useful to find the symbol containing a closure or code…

(define x 1+)➟ {Closure: {Code 6800xx for 1+} in {Env: ()}}
(find x) ➟ (x 1+)

5.5 Help interface

We will describe the MacIntosh implementation. Note that:
• This implementation is usable only with 68020 or better microprocessors, a 68881 (or
better) floating point unit is needed to use floating points (you may also use software

Conclusion

emulation packages if you lack the 6888x. There exits good free-shareware ones). MMU is
yet left unused.
• This implementation is not yet complete. The compiler is not really usable, the
development environment is yet very poor (no printing, files limited to 32Ko…).

5.5.1 Configuration

Conclusion

The Help interpreter can run with very few memory (less than 512 Ko) if you are ready to cope
with many GC. One Mo is a nominal value. 4 Mo is really comfortable for most uses. Help runs
under Multifinfer, and with System 7 since rel. 1.4.

The memory “asked for” by Help is simply the memory size indicated in the “Get information”
(Command-I) under the Finder. One can change it easily. By default, this size is 512 Ko and should
therfore be modified if you have more than that available (i hope so).

To modify other features of Help, A set of resedit “TEMPLATES” ressources are given (insert
these ressources in your Resedit copy) . They allow the user to simply modify Help interesting
ressources .Another set of resources allow the modification of the semantics of Help: almost all
closures get strict if you paste strict.res file in Paresseux.

5.5.1.1 The ressource CONF (Id 0, “Configuration”)

Contains four data, user modifiables:

▼ Font Id: choose the default font of Help editor. The initial value (22) is for Courier
(fixedwidth font, for better indent).

▼ Font Size: Choose the default size for the font. Default: 9.
▼ Block Visu: choose the duration (in 1/60 seconds) of lexical block visulisation (parenthesis

match…) when using mouse click or cursor arrows. Initial value: 6 for 1/10 second.
▼ Stack Memory %Age: choose how much memory you want to give to stacks. Initial

value:10% (should be enough for almost any application).

5.5.1.2 Ressources STC#

They contain “C” strings. The first one(Id 0, “SynF Names”) holds the name of every syntactic
form of the language. These names may be modified to user convenience (You will have to modify
every help source also…).

The next one (Id 1, “Erreurs”) holds alternatively the error message and the error name of every
help error. Again, can go wild modifying error message (no side-effects) or error names (but pay
attention to sources that do refer to error names).

5.5.1.3 Ressource STCL (Id 0, “Startup File”)

It simply contains the name of the startup file, loaded by Help when starting. (Initial value: Start”.
It is preceded by two words. The first one should be left unmodified, the next one is the length of
the whole thing in LONG WORD). It is possible to use a full path (See closures openi et openo). I

5.5.1.4 Ressource STCN (Id 0, “Closures Names”)

It contains informations related to predefined closures. Four fields for each closure:

▼ Strictness: a number in hexa that should be interpreted as a 16 bit bit-array. The weak 15
bits gives strictness of the closure with respect to the first 15 args. The last one (the higher
one) gives the stricness for any supplementary argument. It is therefore “easy” to

Conclusion

suppress most lazyness from help by setting EVERY strictness to $FFFF and by using the
macro defkap and kappa (instead of define and lambda, see Start file).

▼ Arity: Gives the arity (or minimal arity) of the closure. User modification is neither required
nor advised !

▼ Type: Gives the type of the closure (fixed arity:0, variable arity: 1). User modification is
neither required nor advised !

▼ The string: Gives the name of the symbol that will denote the closure. If you modify this
one, you will have to modify every sources that refer to this closure name ! (including Start
file !).

5.5.1.5 Ressource CART (Id 200, “Reader conf”)

Contains 256 bytes that give the reader the type of each ASCII codes. You may therefore modify
the charcters for lists, vectors… See § 5.2.8. You will again have to modify any source that may
use these chars.

5.5.1.6 Ressources WIND

To perfectly match your screen, the sizes and position of default Help windows are user-
modifiable. You may set:

▼ Size and position of the “Transcript” window, ID 1000;
▼ Sizes and positions of the five edit windows, used cyclicly by Help at each window creation

(ID 1001 to 1005).

5.5.2 Using the editor

The editor intensively relies on ROM routines and inherit their limitations. The most important
one being that no text should be longer than 32Ko. Undefined10 things may occur when this limit is
reached.

The “Transcript” window receives every error message (it is associated to the default error
input/output unit denoted bythe symbol “stder”). It has every limitation of other windows (32 Ko
limit) so think to clean it from time to time (Command-A, Backspace. Forgetting to clean it will
simply lead to memory loss and weird printing… no bomb).

Every window is an edit and evaluate window. The scheme used rely on the validation key used
(and is really great to use IMHO). Two different modes:

▼ The carriage return key is for editing. It will simply change from one line to the following
one, with automatic indentation and “(“, “[“ or “{“ matching.

▼ The ENTER key (numerical keyboard) is for evaluation. If a sequence of chars has already
been selected, this sequence will be evaluated. Otherwise, the previous S-expression will
be automatically selected and evaluated (try it, you will understand immediatly).

10Wthout any danger, i.e. you should be able to save anyway, then split the file using a decent text editor.
Conclusion

In this case (ENTER key) it is possible to change the READ-EVAL-PRINT behaviour:

▼ If you press shift-ENTER instead of ENTER, no value will be printed. This is VERY useful in
the frame of lazy evaluation (no suspension will be forced by the printer).

▼ If you press Option-ENTER instead of enter, the value will be printed on the error input-
output default unit (denoted by the symbol stder). This is especially useful to evaluate part
of (or a whole) file without damaging it. Example: to load a file, select open, type command-
A (select all) then Option-ENTER. Note that values are always printed between “comment
chars” ({ and }).

The mouse “click” allows to easily check the “matching” of the “()”, “[]” and “{}”. If their is no
match, you will hear a beep. Another useful trick: if you click with the Option key pressed, the
matching is verified, shown and SELECTED. You will then be able to cut, paste… it. The double
click selects a “word”.

5.5.2 The evaluator and the “bugs”…

Help has been used for much, much time, and very few bugs are known (in fact, only ONE, in
bignum multiplication). In case of bug during evaluation (The mouse pointer will look like a small
Macintosh) or during a GC (Mouse pointer in Sweep, mark, or Compacify 1,2 or 3 state):

▼ If you use a debugger, simply GO to the address contained in the D6 register (type “G D6”
under MacsBug). You will return to toplevel in the best possible conditions (stacks and
main Help machine registers set to default values). Nevertheless, the system may be
unstable, especially if Help or macintosh heap are damaged. You are advised to save and
exit (or reboot).

▼ Otherwise, The “System Error Manager” will try to draw a simple dialog with an error
message and two buttons. If the Mac Heap is damaged…This drawing may be partial.
Simply rememberthat LEFT button is “Reboot” and RIGHT is “Resume” (it will resume Help
as if you had a debugger and had typed “G D6” (If the screen appearance has been damaged
by the dialog, simply zoom and unzoom one of Help windows). Nevertheless, the system
may be unstable, especially if Help or macintosh heap are damaged. You are advised to
save and exit (or reboot).

Conclusion

Bibliography

[Abelson 85] : Harold Abelson et Gerald Jay Sussman avec Julie Sussman
Structure and Interpretation of Computer Programs
M.I.T. Press, Cambridge, 1985

[Aho 83]: A. Aho, J. Hopcroft et J. Ullmann
Structures de données et Algorithmes
InterEditions 87 (orig. Addison & Wesley 83)

[Aho 86]: A. Aho, R. Sethi et J. Ullmann
Compilateurs: Principes, Techniques et Outils
InterEditions 89 (orig. Addison & Wesley 86)

[Allen 78]: John Allen
Anatomy of LISP
McGraw-Hill Inc., 1978

[Allison 86]: Lloyd Allison
A Practical introduction to denotational semantics
Cambridge University Press, 1986

[Ashcroft 85]: Edward A. Ashcroft, William W. Wadge
Lucid, the Dataflow Programming Language
Academic Press, 1985

[Avenhaus 90] J. Avenhaus & K. Madlener
Term Rewriting and Equationnal Reasoning
Elsevier Science Publishers - North Holland, 1990

[Barendregt 84] Barendregt H.P.
The Lambda calculus, Its syntax and semantics
North Holland, 1984

[Bloss 88] A. Bloss, P. Hudak, J. Young
Code Optimisations for Lazy Evaluation
Lisp ans Symbolic Computation ,Vol. 1, N° 2,p 147-164 (1988)

[Briot 86] J.P. Briot, P. Cointe & E. Saint-James
Réécriture et récursion dans a closure
Journées Langages Orientés Objet - p90-100

[Cayrol 85] : Cayrol Michel
Conception, Formalisation et Expérimentation d’un modèle pour le
traitement d’objets finis ou infinis dénombrables.
Thèse d’Etat , Université Paul Sabatier, 1985

[Cayrol 87] : Schiex Thomas, Cayrol Michel
Psil: L’infini en programmation
AFCET-RFIA 1987

[Cayrol 92] Cayrol Michel, Palmade Olivier, Schiex Thomas
A fixed point Semantics for the ATMS.
Journal of Logic and Computation (to appear), 1992

[Chailloux 80]: Jérôme Chailloux
Le Modèle VLisp: Description, Implémentation et Evaluation
Thèse de troisième cycle, Université P. et M. Curie (Paris VI), 1980

[Chailloux ??]: Jérôme Chailloux & ??

Conclusion

Manuel Le_Lisp version 15.21
INRIA - 19??

[Clinger 82]: William Clinger
NonDeterministic Call by Need is Neither Lazy Nor by Name
ACM Symposium on Lisp and Functionnal Programming, 1982

[Clinger 87]: William Clinger, Jonathan Rees (Editors)
Revised3 Report on the Algorithmic Language Scheme
M.I.T. Artificial Intelligence Memo.

[CM2 87]: Thinking Machines Company
Connection Machine - Model CM-2 - Technical Summary
Thinking Machines technical report HA87-4 , 1987

[Cohen 83]: Comparison of Compacting Algorithms for Garbage Collection
Jacques Cohen & Alexandru Nicolau
ACM Transactions on Prgramming Languages and Systems Vol5, N°4,
Octobre 1983 - p532-553

[Cousineau 89]: Guy Cousineau et Gérard Huet
The CAML Primer - Projet Formel
INRIA-ENS- 1989

[Dybvig 90]: R. Kent Dybvig & Robert Hieb
A New Approach to Procedures with Variable Arity
Lisp & Symbolic computation, Vol.3, N°3, p229-244 (1990)

[Field 88]: Anthony J. Field, Peter G. Harisson
Functionnal Programming
Addison Wesley Publishing company - 1988

[Gabriel 85]: Richard P. Gabriel
Performance and Evaluation of Lisp Systems
The MIT Press - 1985

[Girardot 85]: Jean Jacques Girardot
Les langages et les systèmes LISP
EdiTests, 1985

[Halstead 85]: Halstead R.H.
MultiLisp: A Language for concurrent symbolic computation.
ACM Transactions on Prgramming languages and systems 7(4),
(p 501-538) (Octobre 1985).

[Hillis ??]: Hillis ??
The Connection machine

[Hindley 86]: J. Roger Hindley & Jonathan P. Seldin
Introduction to Combinators and λ-Calculus
Cambridge University Press, 1986
Addison Wesley Publishing Company, 1968

[Jaulent 87]: P. Jaulent & L. Baticle
µ-processeurs 68020, 68030 et leurs coprocesseurs.
Eyrolles (1987)

[Knuth 68]: Donald E. Knuth
The Art of Computer Programming. Vol.1. Fundamental Algorithms
Addison Wesley Publishing Company, 1968

Conclusion

[Mac 85-86]: Apple Computer Inc.
Inside MacIntosh, Vol I à V
Addison Wesley Publishing Company, 1985-86

[Schiex 87] : Schiex Thomas
Psil: Manipulation d’objets infinis dénombrables
Rapport de D.E.A., Université Paul Sabatier, 1987

[Schiex 88] Schiex Thomas
Psil et la Connection Machine
Rapport pour le C.N.R.S et le Conseil Régional (1988)

[Schiex 89] : Schiex Thomas
Psil: A héritier de Scheme
BIGRE: Special Issue : “Putting Scheme to work” , 1989

[Schiex 91] Schiex Thomas
Interprétation et Compilation d'un dialecte paresseux de Scheme: Help
Phd. Thesis
Université Paul Sabatier, Toulouse, France

[Steele 90] Guy L. Steele Jr.
Common Lisp: the language (2nd edition)
Digital Press - 1990

[Tarski 55] Tarski A.
A Lattice-theorical FixPoint Theorem and its Applications
Pacific J. Math. (p285-309), 1955

Conclusion

Examples

{Function composition}
{••••••••••••••••••••}
(define (rond f g)
 (lambda x (f (apply g x))))

{integers}
{••••••••}
(define n (… 0))

{all the fibonacci’s}
{•••••••••••••••••••}
(define (fibn n1 n2) (cons n1 (fibn (+ n1 n2) n1)))
(define fibl (cons 1 (cons 1 (map (∞ +) fibl (-1 fibl)))))

{A strange suite defined by a fixpoint}
{•••••••••••••••••••••••••••••••••••••}
(define (entrelace l1 l2)
 (cons (0 l1) (cons (0 l2) (entrelace (-1 l1) (-1 l2)))))
(define biz (entrelace (… 0) biz))

{readin flow}
{•••••••••••}
(define (in)(cons (read)(in)))
(define input (in))

{Factorielle CPS…}
{••••••••••••••••}
(define (fact x k)
 (cond (zero? x)(k 1)
 (fact (- x 1)(lambda(n)(k (* x n))))))
(define factl (cons 1 (map (∞ *) (… 1) factl)))

{Eratosthene crible}
{••••••••••••••••••}
(define (erat l)
 (cons (0 l)
 (erat (diff (-1 l)
 (map (∞ *) (∞ (0 l)) l)))))

{Decomposition in prime numbers}
{••••••••••••••••••••••••••••••}
(define (dec n l) ; l should be the prime numbers list
 (cond (=? n 1) ()
 (zero? (modulo n (0 l))) (cons (0 l) (dec (/ n (0 l)) l))
 (< n (* (0 l)(0 l))) (list n)
 (dec n (-1 l))))

{Church numerals}
{•••••••••••••••}
(define plus
 (lambda(n1)
 (lambda(n2)
 (lambda(f)
 (lambda(x)
 ((n1 f) ((n2 f) x)))))))

(define zero (lambda(f) (lambda(x) x)))

(define mul
 (lambda(n1)
 (lambda(n2)
 (lambda(f)

Conclusion

 (lambda(x)
 ((n1 (n2 f)) x))))))
(define suc
 (lambda(n)
 (lambda(f)
 (lambda(x) ((n f)(f x))))))

(define a (suc zero))
(define deux (suc a))
(define trois (suc deux))
(define quatre ((mul deux)deux))

(define exp
 (lambda(n1)
 (lambda(n2)
 (lambda(f)
 (lambda(x)
 (((n2 n1) f) x))))))

{The paradoxical combinators}
{•••••••••••••••••••••••••••}

;by Church Y0
(define (Y0 g)
 ((lambda(x) (G (x x)))(lambda(x)(G (x x)))))

{The fixed point for fixed point combinator}
(define (G y)
 (lambda(f) (f (y f))))

;by Turing Y1=Y0 G
(define Y1
 ((lambda(a)
 (lambda(b) (b ((a a) b)))) (lambda(a)
 (lambda(b) (b ((a a) b))))))
;another WEIRD fpc by Klop
(define £
(lambda(a)
 (lambda(b)
 (lambda(c)
 (lambda(d)
 (lambda(e)
 (lambda(f)
 (lambda(g)
 (lambda(h)
 (lambda(i)
 (lambda(j)
 (lambda(k)
 (lambda(l)
 (lambda(m)
 (lambda(n)
 (lambda(o)
 (lambda(p)
 (lambda(q)
 (lambda(s)
 (lambda(t)
 (lambda(u)
 (lambda(v)
 (lambda(w)
 (lambda(x)
 (lambda(y)
 (lambda(z)
 (lambda(r)
(r (((((((((((((((((((((((((
 (t h)i)s)i)s)a)f)i)x)e)d)p)o)i)n)t)c)o)m)b)i)n)a)t)o)r)
))))))))))))))))))))))))))))

Conclusion

(define $ ((((((((((((((((((((((((
 (£ £)

;another one, "à la Klop" in a French release
(define £
(lambda(a)
 (lambda(b)
 (lambda(c)
 (lambda(e)
 (lambda(f)
 (lambda(g)
 (lambda(h)
 (lambda(i)
 (lambda(j)
 (lambda(k)
 (lambda(l)
 (lambda(m)
 (lambda(n)
 (lambda(o)
 (lambda(p)
 (lambda(q)
 (lambda(r)
 (lambda(s)
 (lambda(t)
 (lambda(u)
 (lambda(v)
 (lambda(w)
 (lambda(x)
 (lambda(y)
 (lambda(z)
 (lambda(d)
(d (((((((((((((((((((((((((
 (H e)l)p)E)s)t)T)e)r)r)i)b)l)e)m)e)n)t)F)l)e)m)m)a)r)d)
))))))))))))))))))))))))))))

;factorial funtionnal, to use with Y combinators
(define (FF f)
 (lambda(x)
 (cond (zero? x) 1
 (* (f (1- x)) x))))

{computation with unknowns: replace the leafs of a tree by the maximum leaf}
{••}
(define (rpm l)
 (letrec [((f n rest&maxc)
 (cons (cons max (0 rest&maxc))
 (cond (>? n (-1 rest&maxc)) n (-1 rest&maxc))))
 (rest (reduce f '(() | 0) l))
 (max (-1 rest))]
 (0 rest)))

Conclusion

Index

*, 20
+, 20
-, 20
/, 21
1+, 20
1-, 20
<>?, 17
<?, 21
=!, 12
=?, 17
>?, 21
acos, 22
and, 30
append, 19
apply, 23
asin, 22
atan, 22
atanh, 22
atom?, 18
bcopy, 32
begin, 14
binding=!, 25
binding=?, 25
bindings, 13
bit-arrays, 8
bitand!, 26
bitarray?, 25
bitchg!, 27
bitclr!, 26
bitcount, 26
bitfind, 26
bitnot!, 26
bitor!, 26
bitset!, 26
bitxor!, 26
blength, 32
boolean?, 16
booleans, 16
bug, 35
call/cc, 29
call/ep, 29
car=!, 18
cdr=!, 18
cell, 24
cell=!, 24
cell?, 24
cells, 7

chrono, 31
close, 28
closures, 16
coerce, 31
compgc, 32
cond, 12
Configuration, 33
cons, 18
cons?, 18
conses, 17
constants, 9
control, 29
cos, 21
cosh, 22
Debugging, 14
defext, 13
define, 10
defmacro, 13
envar, 25
environment?, 24
environnement, 24
eq?, 16
equal?, 17
equivalence predicates, 16
error, 28
error handling, 14
error?, 29
errors, 9, 28
eval, 30
exp, 22
expand, 23
explain, 29
find, 32
float, 21
floatings, 7
flushio, 28
force, 29
getcode, 23
getenv, 23
getstrict, 23
ibase, 22
if, 30
input/output, 27
integers, 6
intern, 20
keywords, 9
lambda, 11

length, 19
let, 14
letrec, 14
list, 19
list?, 18
lists, 7, 17
load, 28
log, 22
makebitarray, 25
makecell, 24
makeenv, 25
masgc, 31
memory, 33
modulo, 21
neq?, 16
nequal?, 17
nomemo, 12
not, 16
null?, 18
numbers, 20
openi, 28
openo, 28
or, 30
pause, 14
primitive expressions, 10
prin, 27
prindepth, 27
prinio, 28
prinlength, 27
print, 27
printdebug, 28
quote, 11
read, 27
readio, 28
replace, 32
ressources, 33
runtime, 31
Semantics, 4

Conclusion

setstrict, 23
sin, 21
sinh, 22
special characters, 10
sqrt, 22
stder, 27
stdi, 27
stdo, 27

step, 15
strings, 8
symbol?, 19
Symbols, 8, 19
tan, 22
tanh, 22
type, 30
vectors, 23

warn, 15
where, 32
zero?, 21, 27
∞, 19
≈, 32
…, 19

Conclusion

